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1.:

Abstract

-)A simple procedure is proposed to determine a sample size for estimating

the mean weight of items in a problem of obtaining a batch of a large number of

items. Suppose it is desired to obtain a large number N of items for which

individual counting is4 mpractical, but one can demand a batch to weigh at

least w units and hope that the number of items in the batch is close to the

desired number N * If the items have mean weight 8, it is reasonable to havedeie nme s  I -. I -

w equal to when e is known. When 0 is unknown, one can take a sample of

size n, not bigger than Nj, estimate e by a good estimator eOn , and set w equal
a -

to ' N The proposed procedure determines the sample size to be the integer
Si

closest to pCN5 , where C is a function of the cost coefficients if the

coefficient of variation , is known. It is shown to be optimal in some sense.

If 0 is unknown, a simple sequential procedure is proposed for which the

average sample number is shown to be asymptotically equal to the optimal fixed

sample size. When the weights are assumed to have a gamma distribution given

and # has a prior inverted gamma distribution, the optimal sample size in some

sense can be found to be the nonnegative integer closest tO)CN + pA i),

where A is a known constant given in the prior distribution.-

Key Words:

Optimal sample size; total weight; mean weight; nonparametric; sequential

procedure; Bayes procedure.
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1. Introduction.

Suppose it is desired to obtain a batch of a large number Ns of items and

it is impractical to count them individually. However, it is possible to

require the batch to have at least a certain weight w and hope that the number

N of items in the batch is close to Ns . The problem then is to determine w.

If the weight of the items is constant and is equal to 0 each, then w = eNs.

When a batch with weight w is delivered, it will contain exactly Ns items.

However, if the weights of the items follow a distribution with mean a and
2

nonzero variance a , then even if e is known, the reasonable weight w = GN

will not yield a batch of exactly Ns items. Instead, the number N of items is

determined by

N = inf {kll : X1 +...+ Xk > w), (1.1)

where the X's are the weights of the items and the actual total weight

w 1 .+ XN . Even in this case of known mean e, N so determined will

incur a mean squared error of

E(N-NS ) 2 (1.2)
' 2

which is not zero unless a = 0. If the mean weight e of each item is unknown,

it is possible to take a sample {Xl,..., Xn} of size n (not bigger than Ns ) to

have a good estimate 0n of e and determine

w = X1 +...+ Xn + (Ns-n)en. (1.3)

(The case of known 8 corresponds to that n=O, and en = 8.) The original

problem has then become that of determining (a) a sample size n, (b) a good

estimate 8n of e and (c) the total weight w demanded. Guttman and Menzefricke

i'I
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(1986) have invest.gated this problem by assuming that the distribution of the

X's given e is normal with unknown mean e and known variance a2 and e has a

known prior normal distribution. In this case, they have attempted to choose n

so that

E(K e(N-N s)2 + Ks n) (1.4)

is minimized, where Ke and Ks are the known cost coefficients, en is the

posterior mean and w is X1+...+X n + (Ns-n)8n. They have applied a fundamental

equation in renewal theory given as (2.1) in their paper to compute (1.4).

However, since the X's are assumed to have a normal distribution, (2.1) would

not hold. Although it is well-known (cf. Feller II, p.372) that the asymptotic

distribution of N given w is normal with mean w/e and variance wa 2/3 as N

becomes large, it is not clear how the development in Guttman and Menzefricke

(1986) is theoretically justified. Moreover, even if the development has been

fully justified, the determination of the optimal sample size n has not been so

easy; it would have to involve some quite complicated computation.

In this note, we shall develop a treatment of the aforementioned problem,

using the asymptotic renewal theory. As a result, the determination of a

sample size will be very easy and simple arithmetic under various scenarios.

Specifically, we shall make the following standing as °amptions. Let X1, X2,...

be independent and identically distributed random variables (representing the

individual weights of the items and not necessarily normal) with positive mean

2e and variance a . For each nonnegative integer n, let w be defined as in

(1.3) and N be defined as in (1.1). The problem is to choose n and en in (1.3)

2
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so that (1.4) is minimized in some sense. We shall specify in what sense n is

chosen optimally in each of the following cases being studied: (a) the mean e

is a known constant, (b) the mean e is an unknown constant, (c) the mean e is

an unknown random variable having a known distribution and (d) the mean e is an

unknown random variable having an unknown distribution.

2. The mean e is a known constant.

In this section, instead of assuming normality for the distribution of the

X's, we shall assume that the X's follow a nonparametric distribution and we

know the mean e. In this case, the obvious choice of n is zero and the natural

choice of en is G. Then w = GNs , and N becomes the smallest integer k such
2

that XI+...+X k is at least ONs . The exact computation of E(K (N-Ns ) + K n) is
1 kS* e S) s

impossible. However, by the well-known renewal theory (cf. Chow et al (1979))

" as N becomes large,

2 2"E(K e(N-N S))  K Ke Ns (a/)2 (2.1)

We shall consider the right-hand-side of (2.1) as an inherent fixed cost which

cannot be eliminated even though we may know e.

3. The mean e is an unknown constant.

Again, we assume the X's follow a nonparametric distribution; but this time

even the mean e is unknown. Suppose a sample {X1 ,...,Xn} of fixed sample size

n is taken. A reasonable choice of en is (X1 +...+Xn )/n, which is also the

nonparametric maximum likelihood estimate. Then

w =X+...+X + (N -n) = 8 N, (3.1)
1" n s n n s

and

3



Nn = N-n = inf {k>l: Xn+1 +...+ Xn+k > n (Ns-n)}.

The risk function is
2

E(Ke(N-NS ) + Ksn) (3.2)

K n2 2 en- 2= KeE(Nn - (Ns-n) ;-) + Ke(Ns - n) E(-- -) + Ksn

en e-e
+ 2K (N -n)E(N - (Ns-n)-)(---)

e s flG

0 n2 2 a2

= KeE(N - (N s-n)-) + Ke (Ns-n) --- + Ksn

0n  en-e
+ 2Ke (Ns-n)E(Nn-(Ns-n) -)(- --).

By the renewal theory, as Ns becomes large

50 2
E(Nn - (Ns-n) -) = (Ns-n)(al/e)2, (3.3)

and

en en-e N -n
(Ns-n)E(Nn - (-n) -)(- -- ) = o (----). (3.4)

An-

Therefore the risk function is asymptotically

(N -n 2
KeNs(e)2 + KMe -- (a/e)2 + (K - K (/0) 2)n (3.5)

ese n s e
N 2

=-KeNs(/) 2 + Ke( a/e)2 --- + Ksn.e s e n s

Since the inherent fixed cost in (3.5) does not involve the sample size n, we

shall consider the following transformed risk function (with n not greater

than N )

N 2

R = K(a/e)2 - - + Ksn (3.6)
n e n s

4



which is minimized by taking n, to be the integer closest to

aN, (3.7)

and the transformed risk function is approximately

2 N ((K K (3.8)

es e s5 )

Now if the coefficient of variation q/O is known, then (3.7) is computable, and

one simply takes a sample of size n* which is optimal in the sense of

minimizing the transformed risk function (3.6), and determines an additional

weight of (Ns - n,)(X +...+Xn )/n,. If the coefficient of variation a/e is

also unknown, then one can determine the sample sequentially by

-r = inf r, > m: n -N4 (3.9)
an

where m is a positive integer greater than one and

en = (Xl+...+Xn)/n and (3.10)

-2 1 n ^2(Xi - en) . (3.11)an n 1 1 n

Then

en + -- .. ) ( 2

-= inf fn>m: n > n (3.12)
n

where X = (K/K . That is, take a sample of size - and determine the
N s es

additional weight of (Ns-r)(X 1 +...+ XIT )/-r. By the strong law of large

numbers, it is straightforward to show that as Ns becomes large, provided the

distribution of X is continuous or m goes to infinity as Ns but at a slower

pace,

5



T= n, a.s. (3.13)

that is; the ratio of the sample size t over the optimal sample size goes to

one almost surely. The following theorem on the average sample number is also

true.

Theorem. Et = n, as Ns goes to infinity.

That is the average sample size of the sequential procedure is equal to the

optimal sample size to the first order. The precise conditions on the X's and

the proof will be given in the Appendix, as the proof is rather technical.

4. The mean e is an unknown random variable having a known distribution

In this section, we shall assume that given e, the X's have a parametric

density and the coefficient of variation p = a/e is known. Specifically, given

e, let the probability density of the X's be
f(x;e) = ( ) x > 0 (4.1)

E~cr(c,)

0 x<0

2where a - 1/p2 , and e has a density

a -b/O
T(E) , e > 0 (4.2)

{ea r(a)e

where a and b are known positive constants. Following the development as in

Section 3, we have an asymptotic risk equal to

Ns-n n-e
K -+ K (Ns-n)2 E(---)2 + K n. (4.3)Ke cc e s"

6



An obvious choice of en is

E( IXI,...,Xn)
0 n =-- 1(4.4)E( = ilXl, ... ,X n )

c(XI+...+X ) + b

na + a+l

and the expression in (4.3) becomes

N-n2 1
K ---- + K (N -n)- --- + K n, (4.5)

e a e s nax+a+l 5'

which is minimized by taking n, to be the nonnegative integer closest to

p N + (a+l) p - p . (4.6)

And the total weight can be determined by

w=X 1 +...+X + (Ns-n, ) en. (4.7)

5. The mean e is an unknown random variable having an unknown distribution.

We shall make the same assumption as in Section 4 except that a and b in

the prior distribution are unknown and that p may not be known. In this case,

the optimal sample size (4.6) can not be computed and the estimate (4.4) can

not be evaluated. If it is known that a is small (small a corresponds to large

variance of the prior distribution), then (4.6) is quite close to

pN5  (5.1)n

We recommend a sample size of an integer n closest to (5.1) and estimate e by e

(X +...+ X n)/n and determine the weight by

7
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Ns(Xl+...+Xn)/n. (5.2)

If p is also unknown, the sequential procedure as described in Section 3 is

recommended. That is, the sample size r is

= inf {n > m: en/0 n Ns/n), (5.3)

where m is a positive integer greater than one,

e) = (X1+...+Xn)/n, and (5.4)

n (
= 1/n E (X - n (5.51

Then the weight determined is

w = Ns(X1+...+X )/T. (5.6)

If a is not known to be small, then (5.1) will not be close to (4.6). There does

not seem to be much one can do except in the case when there are previous data

available. In this case, an empirical Bayes approach can be applied. A study of

such an approach will be conducted elsewhere.

6. An example.

We shall present a table of optimal sizes for different values of p, a, b,

Ks, K and Ns . The optimal sample size in the Bayes columns is computed froms e s*

(4.6), that is, the nonnegative integer closest to

LKJpN S + (a.+l)p 1I RI- - 1] (6.1)

and the optimal sample size for the nonparametric column is computed from (3.7),

the integer closest to

8
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pNs 
(6.2)

We have chosen the values such that the first part corresponds quite closely to

that reported by Guttman and Menzefricke (1986). Notice that the optimal sample

sizes are quite unstable in the Bayes case as a varies. Of course, when a is

large, it corresponds to small variance in the prior distribution which amounts

to saying that the mean is known quite precisely and thus less sample size needs

to be taken. The nonparametric column also gives the asymptotic average sample

numbers in the first order approximation when they are big.

.1

*'#

'p

4, 9

'p
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Table 1. Optimal Sample Sizes (N = 20,000; K 1)

Bayes Nonparametric

,_ _a

360000 36000 3600 360 36
A. p = 1/60

K e=100 3250 3325 3332 3333 3333 33331 235 323 332 333 333 333

.01 0 23 32 33 33 33

.0001 0 0 2 3 3 3

B. p = 1/30

K e=100 6400 6640 6664 6666 6667 66671 280 628 663 666 667 667

.01 0 27 63 66 67 67

.0001 0 0 3 6 7 7

C. p = 1/15

K e=100 12800 13280 13328 13333 13333 133331 0 1184 1318 1332 1333 1333

.01 0 0 117 132 133 133

.0001 0 0 0 12 13 13

| 1I0



Appendix.

Theorem: Let X, X1, X2,... be independent and identically distributed random

variables with positive mean G and finite nonzero variance a For each n>l

let

n _- (X+ . +x), (A.1)
;n n 1" +n)

2 1 n2
n^  n i l(xi - , and (A.2)

•r = inf { n>m: > (A.3)
CCn

where m is a positive integer bigger than one, and X is a positive constant.

Assume the distribution of X is continuous. If E(X2 )P < m for some p 1 1, then

(i) (XP)p , 0 < X < 11 is uniformly integrable, and

(ii) EIX- IP 0 as X -+ 0.

Proof: Consider

En ) (A.4)

n ------------------n

2en 1 n 2 2 On(%-E)
(a (xi-e ) + . .... ..

Can n i=l an (a + n

For any small c > 0, let

a = inf {n>1: 1en-O1<c) (A.5)

Then since E(X2 )P < -, by Lemma 3 in Chow et al (1983), Ea2p < . Make copies of( ) (2) ( 1) (n)

aand denote them by (i) a and leta n a .+ For each nl,

let

k'
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Yn-- (a2 _ (X n-l'l - E)2) (U2 - (X - e) 2) (A.6)

where a0 = 0. Since E(X2 )P < - and E x2p < -, by Lemma 2(ii) in Chow et al

(1983), EIYIlp < -. Define

= inf {n>l: Il 1+...+Ynl n (A.7)

Since EIYIlp < -, by Lemma 3 in Chow et al (1983), E p < -. Let t = cr" Since

E 2rp < - and Eop < -, by Lemma 2(iii) in Chow et al (1983), Etp < . And t is a

stopping time. Make copies of t and denote by t( ),  ... and let tn = t
(1)

(n).+tn  Then for each n > 1,

A2 2 2
at >2 £a C (A.8)

n

Hence

IRt I

(8+) (c+c 2  (A.9)
a(a - --c ) (a + (a

By Theorem 1 of Yu (1986), [(XT)p , 0 < X<I} is uniformly integrable. By the

strong law of large numbers

X- 0, almost surely, (A.10)

as X goes to zero. Hence as X goes to zero

EIXT - i 0; (A.11)

in particular, if X = is (Ks/Ke) ,

ET K Ns .  (A.12)

12
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